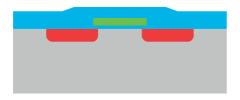
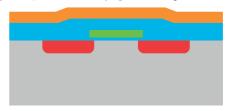
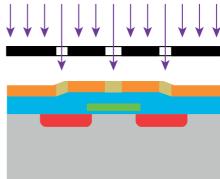

Implantation - Bombard the substrate with **trivalent ions** such as phosphorus. These ions do not pass through the **photoresist**-covered areas, and end up in the **p-type silicon**.


Dissolving - Remove the **photoresist**, which is now no longer required, with a solvent.


Heating - Heat the substrate. This will cause the inserted (phosphor) **ions** to move to the intended positions in the silicon lattice, and also diffuse further into the silicon.


CVD - Apply by CVD a layer of electrically insulating **silicon dioxide** to the substrate. This can be done, for example, by reacting gaseous silane (SiH₄) with oxygen, and precipitating the reaction product SiO₂ onto the substrate: SiH₄ + O₂ \Rightarrow SiO₂ + 2H₂.

Spin coating - Cover the substrate with a new layer of **photoresist** by spin coating.

Masking + UV exposure - Apply a mask above the wafer and expose the photoresist through the mask with ultraviolet light. The UV-exposed part becomes more easily soluble, the non-exposed part remains unchanged.

Dissolving - Remove the **more easily soluble photoresist** with a solvent, so that the **silicon dioxide** layer is exposed there.

Etching - Etch away the exposed silicon dioxide, for example wet-chemically with hydrogen fluoride, or with a plasma. The **photoresist** serves as a protective mask for the **silicon dioxide** that must remain present.